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Meta-analysis

Meta-analysis: pooling results from similar
studies in order to summarize evidence

Typically, experimental treatment vs. control
Often use a binary outcome

Pool results on the OR or RR scale

For the frequentist, methods include:

— Mantel-Haenszel, Peto, inverse-variance

Fixed or random effects



Example

Antibiotics for acute otitis media in children (Review)

Sanders §, Glasziou PE Del Mar C, Rovers M
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Example

* Objective: To assess the effects of antibiotics
for children with acute otitis media

* Primary outcome measure: Pain
(present/absent) at 24 hours

Study Antibiotics (n/N) | Placebo (n/N) OR 95% ClI

Burke 1991 53/112 56/117 0.98 | (0.58, 1.64)
Le Saux 2005 82/258 106/254 0.65 | (0.45, 0.93)
Thalin 1985 58/159 58/158 0.99 | (0.63, 1.56)
vanBuchem 1981a | 13/47 11/40 1.01 | (0.39, 2.59)
vanBuchem 1981b | 17/48 10/36 1.43 | (0.56, 3.65)
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Fixed & Random effects

e Fixed effects model: each ,
study is measuring the same log OR; ~ N(6,sd})
odds ratio

e Random effects model: each
study measures a slightly ,
different odds ratio, however log OR; ~ N(9;,sd7)
there is a common underlying 0. ~ N(0,1°)
odds ratio around which the
individual ORs deviate



Uncertainty in ©

Pooling can be accomplished by taking weighted
means

— For a fixed effects analysis, weights are the inverse of the
variance of the within-study variance: 1/sd.?

— For a random effects analysis, weights are the inverse of
the sum of the within and between study variances:
1/(sd.2+12)

When there are few studies in the analysis, 1 is
measured subject to considerable variability

Frequentist analyses do not account for this.



Bayesian Methods

e Bayesian methods can account for all sources of

variability

re, ~ Bin(NE ,pe,)
rc. ~Bin(NC,,pc.)
logit(pc.) = a.
logit(pe)=a. +0.
o “N(ct, v*)

0. ~N(0,t°)

Put priors on the
parameters we’re
unsure about

(a,v,0,7)



Potential Advantages of Bayesian
meta-analysis

* Accounts for all sources of variability

* Can handle zero events without continuity
corrections

* Can make probability statements

— E.g. Probability that the experimental treatment is
better than the control is 0.8



Priors

Need to put prior distributions on the unknown
parameters (o, Vv,0,1)
— o is the overall log odds of success in the control groups

— V2 is the between-study variance in the log odds of success
in the control groups

— 0 is the overall log odds ratio
— 72 is the between-study variance in the log odds ratios

Most popular option is to use vague priors
Fairly easy to do for o, O
For the variance parameters: How vague is vague?



Alternative formulation

To simplify discussion, shall use alternative formulation

-> Don’t need to worry about distribution of underlying
event rates

Standard formulation: Alternative formulation:

ne; ~ Bin(NE;, pe;) logOR. ~N(6,,sd?)

nc, ~ Bin(NC,,pc,) 0, ~N(0,7")

logit(pc,) = a.

logit(pe,) =a. +0, Alternative formulation:

o, ~ N(or, v?) »  Cannot account for zero events

N 5 Does not account for variability in
0, ~N(©,17) estimates of sd,



“How vague is vague?”

e Lambert et al, 2005
* Used 13 different vague priors

* These gave different results when the number
of studies was small

— Point estimates of pooled ORs were similar
— 95% Crls were very variable across priors



Pooled OR for a selection of vague

priors for t

var ~ 1G(0.001,0.001) u
var ~ 1G(0.1,0.1) u
var ~ U(0.001,1000) i
var ~ U(0.001,4) u
sd ~ U(0,100) =
| sd ~ %J(O.Z) | _ | |
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Odds Ratio



What’s going on?

var~1G(0.001,0.001) —®

var ~ 1G(0.1,0.1) =
var ~ U(0.001,1000) =
var ~ U(0.001,4) =
sd ~ U(0,100) =
sd ~ U(0,100) | = | | |
0.0 0.5 1.0 1.5

Between-study standard deviation



Why be vague?

* Allow the data to dominate the prior
— Less subjective

* Not much prior knowledge

* Requires less thought

BUT

* Not much data -> prior still matters

* There is prior knowledge

* Requires a lot of thought to be vague in this case!



What values of T are reasonable?

ei - N(0172)
P(Pooled OR xe™*" <OR. < Pooled OR x&"*"|8,7) =0.95
Ratio of 97.5% OR. to 2.5% OR, =¢**"

e Usually the range of study ORs would be
within an order of magnitude

—j.e. e392t <10
— |.e. t<0.59

* Cf. Smith, 1995



What’s reasonable?

Cf. Spiegelhalter, 2004

Imagine drawing 0., 0, at random from the
distribution of O,

Then, 6,— 6, ~ N(0,27%)

|6, - 0, |~ HN(27%)
Median ratio of smaller OR to larger is 027
e.g. 1=0.64 leads to a median ratio of 2



What’s reasonable?

exp(3.92t) (ratio Median ratio of
of 97.5" t0 2.5™  random pair

percentile)
0.1 1.48 1.11
0.5 7.1 1.72
1 50.4 2.97
2 2540 8.84

Extract from Spiegelhalter et al, Bayesian Approaches to Clinical
Trials & Healthcare evalulation, p. 169



How reasonable were our vague
priors?

t=0.1 small amount of heterogeneity

1=0.5 (median ratio larger:smaller =1.72) reasonable, but
quite large

t=1 (median ratio of larger:smaller =3) a lot of heterogeneity
t=2 (median ratio of larger:smaller >8) extreme

Prior P(t<2) P(t<1)
72 ~1G(0.001,0.001)  0.0077 0.0063
72 ~1G(0.1,0.1) 0.27 0.17
7>~ U(0.001,1000) 0.0040 0.0010
7>~ U(0.001,4) 1 0.25

7 ~ U(0,100) 0.02 0.01
7~ U(0,2) 1 0.5




Example: Posterior Distribution of t

var~1G(0.001,0.001) —®

var ~ 1G(0.1,0.1) =
var ~ U(0.001,1000) =
var ~ U(0.001,4) =
sd ~ U(0,100) =
sd ~ U(0,100) | = | | |
0.0 0.5 1.0 1.5

Between-study standard deviation



Summary so far

Bayesian methods can incorporate uncertainty about
T

Need a prior distribution for t

Vague priors supposedly let the data dominate

— But we don’t have much data

— Different vague priors give different posterior inferences
about t

As a Bayesian, | should believe my posterior
distribution provided that | believe my prior

| don’t believe any of the vague priors!



Informative prior

* We can use mathematical reasoning to argue
what is and is not theoretically plausible

* We can use past meta-analyses to establish
what is and is not likely



Empirical Evidence

Propose to describe the distribution of between-
study heterogeneity in past meta-analyses

Use this distribution as a prior distribution for Tt in a
new meta-analysis

Should result in better calibration
— Bayesians are well calibrated if their probability statements
are borne out in practice

— E.g. if, amongst the days for which the Bayesian forecaster
says it will rain with probability 0.4, it rains 40% of the time



—T
—T
—T

Cochrane Review

-rom the Cochrane Database of Systematic
Reviews, extracted all reviews published
oetween Jan 2008 and Jul 315t 20009.

Reviews were included in the sample if

ney included data from two are more studies
he primary outcome was binary

ne first forest plot included a pooled result



Cochrane Review

* Only the pooled result from the first forest
plot was included.

— If there was a total result pooled across all
subgroups, this was used

— If pooling was done within subgroups, the first
subgroup with pooling was used



Summary of findings

e Search retrieved a total of 942 records
e 314 provided valid data

e Of those excluded:

— 103 did not include any studies
— 320 did not pool results for the primary comparison
— 198 did not have a binary outcome

— In 4 reviews, all the included studies had either 100% or
0% event rates

— 3 studies were excluded for other reasons (meta-analysis
of cross-over trials, numbers of events/patients not
reported)



Fitting Distributions

Candidate distributions

— Inverse Gamma
— Gamma
— Log-Normal

Option 1: Maximum Likelihood, ignoring uncertainty
In parameters

Option 2: Incorporate uncertainty in parameters
through Bayesian model

Option 3: Incorporate uncertainty in estimates of t
by including study-level data from each included
review



Option 1

* Derive estimate of t2 from each individual
review through method-of-moments

32 = Q(kl)/[zk:w,?] if Q> k-1

0ifQ<k-1
e Distribution of t2:
— Point mass at zero

— Estimate distributional parameters by maximum
likelihood




Option 2

Use method-of-moments to estimate t?2
Point mass at zero

Use model to express uncertainty about
distributional parameters:

X = (Tryjew = 0)
X ~ Bernoulli(p)
fort?,., >0:
Y =109(T yien)

y ~ N(u,c%)



Option 3

e Use individual-level study results from each review
in order to capture uncertainty in estimates of t

e Useful if want to constrain t>0

New meta-analysis Cochrane review data
logOR, ~ N(0,,sd?) logOR ™" ~ N(a;;, var; )
0. ~ N(0,7%) o; ~ N(a;, 7))

t° = exp(log tau) % = exp(log tau )

logtau ~ N (i, %) logtau; ~ N(u, %)



Results
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Summary Stats: Method-of-
moments estimators

Parameter 1 quartile  Median 3" quartile
Pooled OR 0.56 0.95 1.54

Pooled RR 0.68 0.97 1.30
Pooled log OR -0.58 -0.05 0.43

Pooled log RR -0.39 -0.03 0.27

T0R 0.49 0 0.0084 0.25

°RR 0.51 0 0 0.075

Mean 1?5, = 0.27

Mean 1%z = 0.11



Option 1: OR

Range fort  Observed Expected counts
Inverse Gamma Gamma Log-Normal
(0.511, 0.031) (0.65,1.218)  (-1.563, 1.494)
(0,0.1] 4 2.13 10.08 3.36
(0.1, 0.5] 78 98.89 63.31 84.71
(0.5, 1] 58 29.52 60.55 49.13
>1 21 27.54 27.07 23.80
v goodness-of-fit p-value <0.0001 0.036 0.4603
Kolmogorov-Smirnov p-value | 0.0000340 0.364 0.5388




Option 1: RR

Range fort  Observed Expected counts
Inverse Gamma Gamma Log-Normal
(0.416, 0.00616)  (0.524,2.217) (-2.645, 1.710)
(0,0.1] 22 33.42 23.40 19.26
(0.1, 0.5] 90 82.82 82.92 98.44
(0.5, 1] 36 15.98 40.99 25.99
>1 5 17.70 5.69 9.32
v goodness-of-fit p-value <0.0001 0.7104 0.073
Kolmogorov-Smirnov p-value | 0.00022 0.1277 0.7329




Option 2 — Goodness-of-fit

Deviance Information Criterion (DIC) for the
three distributions (lower is better)

Distribution OR RR
Inverse Gamma 157 -135
Gamma 101 -187

Log-Normal 87 -207




Option 2: Estimated parameters

Rate (inverse gamma & gamma);
precision (log-Normal)

Shape (inverse-gamma &

gamma); mean (log-Normal)

ML Post. median & 95% Crl ML Post. median & 95% Crl
Inverse gamma | 0.511 0.51 (0.42, 0.61) 0.031 0.03 (0.023, 0.04)
Gamma 0.65  0.65(0.53,0.77) 1.218 1.21 (0.91, 1.56)
Log-Normal -1.56  -1.56 (-1.80, -1.33) 0.45 0.44 (0.35, 0.55)

RR
Inverse gamma | 0.416 0.41 (0.34, 0.49) 0.0061 0.0061 (0.004,0.0081)
Gamma 0.524 0.52 (0.43, 0.62) 2.217 2.19 (1.61, 2.89)
Log-Normal -2.645 -2.65 (-2.92, 2.37) 0.34 0.34 (0.27,0.42)




Option 3: Model fit statistics based
on RCT-level data

Odds ratios scale

Distribution Posterior Median & 95% Crl DIC

Log-Normal Mean: -3.16 (-3.84, -2.68) 4706
Precision: 0.35 (0.20, 0.61)

Inverse Gamma  Shape: 0.95 (0.67, 1.40) 4716
Rate: 0.03 (0.01, 0.06)

Relative Risk scale
Distribution Posterior Median & 95% Crl DIC

Log-Normal Mean: -4.41 (-5.16, -3.89) 2733
Precision: 0.32 (0.18, 0.56)

Inverse Gamma  Shape: 0.87 (0.63, 1.24) 2743
Rate: 0.0063 (0.0024, 0.014)




Summary

* Log-Normal fits best in all three approaches
* Less heterogeneity in the RRs than in the ORs



Application to example OR

var ~ 1G(0.001,0.001)

var ~ 1G(0.1,0.1) »

var ~ U{0.001,1000) =

var ~ U(0.001,4) »

sd ~ U(0,100) u

sd ~ U(0,100) =
Log-Normal(-1.56, 1.49) »
Log-Normal estimated parameters u
Log-Normal (full data) =

| [ [ [ |
0.1 0.2 0.5 1.0 2.0

Odds Ratio



Posterior distribution for t

var~1G(0.001,0.001) =

var ~ 1G(0.1,0.1) =

var ~ U(0.001,1000) =

var ~ U(0.001,4) »

sd ~ U(0,100) =

sd ~ U(0,100) =

Log-Normal(-1.56, 1.49) =

Log-Normal estimated parameters =

Log-Normal (full data) =

0.0 0.5 1.0 1.5

Between-study standard deviation



Strengths

* Proposed priors describe reasonable beliefs
about between-study heterogeneity

* |f you do a new meta-analysis using this
empirical prior
— Provided you believe the prior, you should believe
the posterior

— Regardless of how many studies were in your
meta-analysis



Limitations

* Have used Cochrane reviews only

 Have used the alternative, less desirable
formulation of the Bayesian model

— Study-level data is log OR and associated variance,
not raw numbers of events, non-events

— Does not account for uncertainty in variance of log
ORs
* Have used just one review for illustration —
impact of priors on results may be different
for other examples



Questions

Does it matter that the data was extracted by just
ohe person?

Are Cochrane reviews different from other reviews?

Can heterogeneity be exactly equal to zero?
— i.e. should | have a point mass at 0?

Priors for pooled OR and heterogeneity assumed
independent — does this matter?

| used a continuity correction for trials with zero
events — how much would the results change on
using an alternative method?

Exchangeability?



